准则Ⅰ如果数列$\{ {x_n}\} ,\{ {y_n}\} 及\{ {z_n}\} $满足下列条件:
(1)从某项起,即$\exists {n_0} \in {\bf{N}}$,当$n>n_0$ 时,有$y_n≤x_n≤z_n,$
(2)$\mathop {\lim }\limits_{n \to \infty } {y_n} = a,\mathop {\lim }\limits_{n \to \infty } {z_n} = a,$
那么数列$\{ {x_n}\} $的极限存在,且$\mathop {\lim }\limits_{n \to \infty } {x_n} = a.$
证明:因$y_n→a,z_n→a$,所以根据数列极限的定义,$\forall $$ε>0$,$\exists $正整数$N_1$,当$n>N_1$时,有$|y_n-a|<ε$;又存在正整数$N_2$,当$n>N_2$时,有$|z_n-a|<ε$.取$N = \max \{ {n_0},{N_1},{N_2}\} $,则当$n>N$时,有$|y_n-a|<ε,|z_n-a|<ε$同时成立,即
$$a - \varepsilon < {y_n} < a + \varepsilon ,a - \varepsilon < {z_n} < a + \varepsilon ,$$且$y_n≤x_n≤z_n$,则
$$a - \varepsilon < {y_n} \leqslant {x_n} \leqslant {z_n} < a + \varepsilon ,$$即$|x_n-a|<ε$
这就证明了$\mathop {\lim }\limits_{n \to \infty } {x_n} = a.$
数列极限的存在准则可以推广到函数的极限:
准则Ⅰ'如果
(1)当$x∈\mathop U\limits^0 \left( {x_0,r } \right)$(或$|x|>M)$时,
$$g(x) \leqslant f(x) \leqslant h(x),$$(2) $\mathop {\lim }\limits_{x \to {x_0}} g(x) = A,\mathop {\lim }\limits_{x \to {x_0}} h(x) = A,$或$\mathop {\lim }\limits_{x \to \infty } g(x) = A,\mathop {\lim }\limits_{x \to \infty } h(x) = A,$
那么$\mathop {\lim }\limits_{x \to {x_0}} f(x) = A$或$\mathop {\lim }\limits_{x \to \infty } f(x) = A.$
例 证明
$$\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1.$$证明 首先注意到函数$f(x) = \frac{{\sin x}}{x}$的定义域是:$\{ x|x \in {\bf{R}}但x \ne 0\} $,而且证明的是$x→0$(因为函数在$x=0$处没有定义,而通常情况下我们想知道函数在没有定义或无法取值的点的函数值)时函数的极限.在一维的情况下, $x→0$只包括$x$从0的左侧和右侧同时趋近,且$\sin x$为三角函数,因此我们只需考虑0的某一去心邻域$\mathop U\limits^0 \left( {0,\frac{\pi }{2}} \right)$即可,即$x \in \mathop U\limits^0 \left( {0,{\pi \over 2}} \right).$
$\frac{{\sin x}}{x}$在$x=0$时没有意义,是我们求证$x→0$时$\frac{{\sin x}}{x}$的极限的原因.
如图所示,$\angle DOA = x(0 < x < \frac{\pi }{2})$
$OC = \cos x,CB = \sin x,AD = \tan x,\widehat {AB} = x,$
$$\frac{{2\pi }}{{2\pi R}} = \frac{x}{{\widehat {AB}}} \Rightarrow \widehat {AB} = x,$$${S_{\Delta OAB}} < 扇形OAB面积 < {S_{\Delta OAD}},$
$$\frac{{\pi {R^2}}}{{2\pi }} = \frac{{扇形OAB面积}}{x} \Rightarrow 扇形OAB面积 = \frac{x}{2},$$所以 \begin{equation} \frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\tan x \end{equation}
或 \begin{equation} \cos x < \frac{{\sin x}}{x} < 1 \end{equation}
在第四象限内依然比较面积关系,有
$$\frac{{ - \tan ( - x)}}{2} > \frac{{ - ( - x)}}{2} > \frac{{ - \sin ( - x)}}{2} > 0,$$ $$ - x < \sin ( - x) < 0,$$ \[\left\{ \begin{gathered} 0 < \sin x < x, \hfill \\ - x < \sin ( - x) < 0, \hfill \\ \end{gathered} \right. \Leftrightarrow |x| > |\sin x|,x \in \mathop U\limits^0 \left( {0,{\pi \over 2}} \right),\] \[\frac{{ - \tan ( - x)}}{2} > \frac{{ - ( - x)}}{2} > \frac{{ - \sin ( - x)}}{2} > 0,\] \[\tan ( - x) < - x < \sin ( - x) < 0,\] \[\frac{1}{{\cos ( - x)}} > \frac{{ - x}}{{\sin ( - x)}} > 1,\] \[\cos ( - x) < \frac{{\sin ( - x)}}{{ - x}} < 1,\]这与(2)式是一致的,
因此用$-x$代替$x$时,(2)式对于开区间$( - \frac{\pi }{2},0)$内的一切点$x$也是成立的.
当$|x| \geqslant \frac{\pi }{2}$时,$\sin x| \leqslant 1 < |x|,$因此对于任意的角度$x$,当$x≠0 $时有$|\sin x| < |x|$.
为了对上式运用准则Ⅰ',下面来证明
$$\mathop {\lim }\limits_{x \to 0} \cos x = 1.$$当$0 < |x| < \frac{\pi }{2}$时,
$$0 < |\cos x - 1| = 1 - \cos x = 2{\sin ^2}\frac{x}{2}$$因为$|x| > |\sin x|,x \in \mathop U\limits^0 \left( {0,{\pi \over 2}} \right),$因此
$$0 < |\cos x - 1| = 1 - \cos x = 2{\sin ^2}\frac{x}{2} < 2{(\frac{x}{2})^2} = \frac{{{x^2}}}{2},$$当$x \to 0,\frac{{{x^2}}}{2} \to 0,$由准则Ⅰ'有$\mathop {\lim }\limits_{x \to 0} (1 - \cos x) = 0,$由函数极限的运算法则,有$\mathop {\lim }\limits_{x \to 0} \cos x = 1,$由于$\mathop {\lim }\limits_{x \to 0} \cos x = 1,$$\mathop {\lim }\limits_{x \to 0} 1 = 1,$由不等式 (2) 及准则Ⅰ',即得
$$\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1.$$