课程表

微分中值定理

洛必达法则

泰勒公式

函数的单调性与曲线的凹凸性

函数的极值与最大值和最小值

曲率

洛必达法则

两个函数$f(x)$与$F(x)$当$x→a$(或$x→∞$)时都趋于零或无穷大,那么极限

\[\mathop {\lim }\limits_{\begin{array}{*{20}{c}} {x \to a} \\ {(x \to \infty )} \end{array}} \frac{{f(x)}}{{F(x)}}\]

可能存在、也可能不存在.通常把这种极限叫做未定式(Indeterminate form),并分别记作$\frac{0}{0},\frac{{\infty }}{{\infty }}.$这类极限之所以称为未定式,原因在于它们的极限(有可能存在,比如0,1、也可能不存在,比如无穷大)是不确定的,未定的,需要根据$f(x)$与$F(x)$的实际表达式来具体分析确定.实际上,未定式的极限可能是任何实数.

比如:

$$\mathop {\lim }\limits_{x \to 0} \frac{x}{{{x^3}}} = {\infty },\mathop {\lim }\limits_{x \to 0} \frac{x}{x} = 1,\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{x} = 0,\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1$$ $$\mathop {\lim }\limits_{x \to {\infty }} \frac{{3{x^3} + 4{x^2} + 2}}{{7{x^3} + 5{x^2} - 3}} = \frac{3}{7}$$

很多情况下,我们可以用代数消元(约分)、洛必达法则等方法作用于未定式的表达式上使得未定式可以求出.

In many cases,algebraic elimination,${L}'{H}o {\text{pital}}'{\text{s}}$ rule,or other methods can be used to manipulate the expression of indeterminate forms so that the limit can be evaluated.

下面来介绍洛必达法则.我们着重讨论$x→a$时的未定式$\frac{0}{0}$的情形.

定理1 设

(1)当$x→a$时,函数$f(x)$及$F(x)$都趋于零;

(2)在点$a$的某个去心邻域内,$f'(x)$及$F'(x)$都存在且$F'(x)≠0$;

(3)$\mathop {\lim }\limits_{x \to a} \frac{{f'\left( x \right)}}{{F'\left( x \right)}}$存在(或为无穷大),

那么

$$\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{F\left( x \right)}} = \mathop {\lim }\limits_{x \to a} \frac{{f'\left( x \right)}}{{F'\left( x \right)}}$$

证明:求有理分式函数当$x→a$的极限时,若$\mathop {\lim }\limits_{x \to a} F\left( a \right) \ne 0$,根据商的极限等于极限的商的极限运算法则有:

$$\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{F\left( x \right)}} = \frac{{\mathop {{\text{lim}}}\limits_{x \to a} f\left( x \right)}}{{\mathop {{\text{lim}}}\limits_{x \to a} F\left( x \right)}}$$

现在$\mathop {{\text{lim}}}\limits_{x \to a} F\left( x \right) = 0$,所以不能根据商的极限等于极限的商的极限运算法则来求. 前面我们用消元法求解过不定式,因此,可以消元必定可以增元. 当$x→a$时,未定式的分子分母同时乘以$\frac{1}{{x - a}}$

$$\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{F\left( x \right)}} = \mathop {{\text{lim}}}\limits_{x \to a} \frac{{\frac{{f\left( x \right)}}{{x - a}}}}{{\frac{{F\left( x \right)}}{{x - a}}}}$$

上式中分子分母类似于函数$f(x)$和$F(x)$在$x=a$点的导数的定义式,即

$$\eqalign{ & f'\left( a \right) = \mathop {{\text{lim}}}\limits_{x \to a} \frac{{f\left( x \right) - f\left( a \right)}}{{x - a}} \cr & F'\left( a \right) = \mathop {{\text{lim}}}\limits_{x \to a} \frac{{F\left( x \right) - F\left( a \right)}}{{x - a}} \cr} $$

若$f(a)=F(a)=0$,则

$$\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{F\left( x \right)}} = \mathop {{\text{lim}}}\limits_{x \to a} \frac{{\frac{{f\left( x \right)}}{{x - a}}}}{{\frac{{F\left( x \right)}}{{x - a}}}} = \mathop {{\text{lim}}}\limits_{x \to a} \frac{{\frac{{f\left( x \right) - 0}}{{x - a}}}}{{\frac{{F\left( x \right) - 0}}{{x - a}}}} = \mathop {{\text{lim}}}\limits_{x \to a} \frac{{\frac{{f\left( x \right) - f(a)}}{{x - a}}}}{{\frac{{F\left( x \right) - F\left( a \right)}}{{x - a}}}}$$

根据已知条件:当$x→a$时,函数$f(x)$及$F(x)$都趋于零.

若$f(a)=F(a)=0$,则$f(x)$和$F(x)$正好在$x=a$点连续.

在证明复合函数的求导法则时,推导过程中要求$\Delta u \ne 0$,而$\Delta u \ne 0$导致函数$y=f(u)$在$u$点不连续.这与函数$y=f(u)$在$u$点可导(进而连续)的条件相矛盾,我们后来若设$\Delta u = 0$时,$α=0$来解决这个矛盾.

现在我们假设$f(a)=F(a)=0$并没有与已知条件产生矛盾,则

$$\eqalign{ & \mathop {{\text{lim}}}\limits_{x \to a} \frac{{f\left( x \right) - f(a)}}{{x - a}} = \mathop {\lim }\limits_{x \to a} f'\left( x \right) \cr & \mathop {{\text{lim}}}\limits_{x \to a} \frac{{F\left( x \right) - F(a)}}{{x - a}} = \mathop {\lim }\limits_{x \to a} F'\left( x \right) \cr} $$

这就要求定理中的条件(2)(3)成立,则有

$$\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{F\left( x \right)}} = \mathop {{\text{lim}}}\limits_{x \to a} \frac{{\frac{{f\left( x \right)}}{{x - a}}}}{{\frac{{F\left( x \right)}}{{x - a}}}} = \mathop {{\text{lim}}}\limits_{x \to a} \frac{{\frac{{f\left( x \right) - 0}}{{x - a}}}}{{\frac{{F\left( x \right) - 0}}{{x - a}}}} = \mathop {{\text{lim}}}\limits_{x \to a} \frac{{\frac{{f\left( x \right) - f(a)}}{{x - a}}}}{{\frac{{F\left( x \right) - F\left( a \right)}}{{x - a}}}} $$ $$ = \frac{{f'\left( a \right)}}{{F'\left( a \right)}} = \mathop {\lim }\limits_{x \to a} \frac{{f'\left( x \right)}}{{F'\left( x \right)}}$$

前提是$F'(x)≠0$,若$F'(x)=0$,则针对

$$\frac{{f'\left( x \right)}}{{F'\left( x \right)}}$$

继续重复上述过程.

上述讨论过程的优点是通俗易懂,逻辑简单,我们假定$f(x)$及$F(x)$在$x=a$处连续.

下面介绍运用拉格朗日中值定理的证明.

证明:设$f(a)=F(a)=0$,这个假设与已知不矛盾.

根据已知条件,$f(x)$和$F(x)$ 在$[x,a]$或$[a,x]$上连续,在开区间$(x,a)$或$(a,x)$内可导($x$在$a$的某个邻域内),根据拉格朗日中值定理

$$\frac{{f\left( x \right)}}{{F\left( x \right)}} = \frac{{f\left( x \right) - 0}}{{F\left( x \right) - 0}} = \frac{{f\left( x \right) - f(a)}}{{F\left( x \right) - F\left( a \right)}} = \frac{{f'\left( \xi \right)}}{{F'\left( \xi \right)}},(ξ在a与x之间)$$

$$\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{F\left( x \right)}} = \mathop {{\text{lim}}}\limits_{x \to a} \frac{{f'\left( \xi \right)}}{{F'\left( \xi \right)}} = \mathop {{\text{lim}}}\limits_{x \to a} \frac{{f'\left( x \right)}}{{F'\left( x \right)}}$$

定理2 设

(1) 当$x→∞$时,函数$f(x)$及$F(x)$都趋于零;

(2) 当$|x|>N$时$f' (x)$及$F' (x)$都存在,且$F' (x)≠0;$

(3)$\mathop {\lim }\limits_{x \to \infty } \frac{{f'\left( x \right)}}{{F'\left( x \right)}}$存在(或为无穷大);

那么

$$\mathop {\lim }\limits_{x \to \infty } \frac{{f\left( x \right)}}{{F\left( x \right)}} = \mathop {\lim }\limits_{x \to \infty } \frac{{f'\left( x \right)}}{{F'\left( x \right)}}$$

证明:设$x = \frac{1}{t},(t \ne 0)$,当$x→∞$时,$t→0$,当$|x|>N$时,$\left| t \right| < \frac{1}{N}$,即$t \in \mathop U\limits^0 \left( {0,{1 \over N}} \right)$,此时$f' (x)$及$F' (x)$都存在,且$F' (x)≠0$,则

$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{t \to 0} f\left( {\frac{1}{t}} \right) = 0 \cr & \mathop {\lim }\limits_{x \to \infty } F\left( x \right) = \mathop {\lim }\limits_{t \to 0} F\left( {\frac{1}{t}} \right) = 0 \cr} $$

即(1’)当$t→0$时,函数$f(x)$及$F(x)$都趋于零;

$$\left[ {f\left( {\frac{1}{t}} \right)} \right]' = f'\left( {\frac{1}{t}} \right) \cdot \frac{{ - 1}}{{{t^2}}} = - \frac{1}{{{t^2}}}f'(x)存在$$ $$\left[ {F\left( {\frac{1}{t}} \right)} \right]' = {F'}\left( {\frac{1}{t}} \right) \cdot \frac{{ - 1}}{{{t^2}}} = - \frac{1}{{{t^2}}}F'(x) \ne 0$$

所以(2’)当$t \in \mathop U\limits^0 \left( {0,{1 \over N}} \right),f\left( {\frac{1}{t}} \right),F\left( {\frac{1}{t}} \right)$都可导且$F'\left( {\frac{1}{t}} \right) \ne 0,$

$$\mathop {\lim }\limits_{t \to 0} \frac{{\left[ {f\left( {\frac{1}{t}} \right)} \right]'}}{{\left[ {F\left( {\frac{1}{t}} \right)} \right]'}} = \mathop {\lim }\limits_{t \to 0} \frac{{f'\left( {\frac{1}{t}} \right) \cdot \frac{{ - 1}}{{{t^2}}}}}{{F'\left( {\frac{1}{t}} \right) \cdot \frac{{ - 1}}{{{t^2}}}}} = \mathop {\lim }\limits_{x \to \infty } \frac{{f'\left( x \right)}}{{F'\left( x \right)}}$$

所以

$$(3{\text{')}}\mathop {\lim }\limits_{t \to 0} \frac{{\left[ {f\left( {\frac{1}{t}} \right)} \right]'}}{{\left[ {F\left( {\frac{1}{t}} \right)} \right]'}} = \mathop {\lim }\limits_{{\text{x}} \to {\infty }} \frac{{f'\left( x \right)}}{{F'\left( x \right)}}都存在(或为无穷大)$$

根据条件(1’)(2’)(3’),运用证明$x→a$时的$\frac{0}{0}$型不定式的洛必达法则的证明方法证明即可.

一些$0 \cdot \infty, \infty - \infty, {0^0}{1^\infty },{\infty ^0}$型的未定式,也可以通过$\frac{0}{0}$或$\frac{\infty }{\infty }$型的未定式来计算.

例 求

$$\mathop {\lim }\limits_{x \to \frac{\pi }{2}} (\sec x - \tan x)$$

$$\mathop {\lim }\limits_{x \to \frac{\pi }{2}} (\sec x - \tan x) = \mathop {{\text{lim}}}\limits_{x \to \frac{\pi }{2}} \left( {\frac{1}{{\cos x}} - \frac{{\sin x}}{{\cos x}}} \right) = \mathop {{\text{lim}}}\limits_{x \to \frac{\pi }{2}} \frac{{1 - \sin x}}{{\cos x}}$$是未定式$\frac{0}{0}$,判断洛必达法则中的第2,第3个条件并应用洛必达法则,得 $$\mathop {\lim }\limits_{x \to \frac{\pi }{2}} (\sec x - \tan x) = \mathop {{\text{lim}}}\limits_{x \to \frac{\pi }{2}} \frac{{1 - \sin x}}{{\cos x}} = \mathop {{\text{lim}}}\limits_{x \to \frac{\pi }{2}} \frac{{ - \cos x}}{{ - \sin x}} = 0$$

例 求

$$\mathop {\lim }\limits_{x \to {0^ + }} {x^n}\ln x(n > 0)$$

解 这是未定式$0 \cdot \infty $. 从这里可以看出,未定式$0 \cdot \infty ,\infty - \infty ,{0^0},{1^\infty },{\infty ^0},\frac{0}{0},\frac{\infty }{\infty }$中的$\infty $可以指趋于$+\infty $,$-\infty $或同时趋于正负无穷.

$$\eqalign{ & {x^n}\ln x = \frac{{\ln x}}{{\frac{1}{{{x^n}}}}} \cr & \mathop {\lim }\limits_{x \to {0^ + }} {x^n}\ln x = \mathop {{\text{lim}}}\limits_{x \to {0^ + }} \frac{{\ln x}}{{\frac{1}{{{x^n}}}}} = \mathop {{\text{lim}}}\limits_{x \to {0^ + }} \frac{{\frac{1}{x}}}{{ - n{x^{ - n - 1}}}} = \mathop {{\text{lim}}}\limits_{x \to {0^ + }} \left( {\frac{{ - {x^n}}}{n}} \right) = 0 \cr} $$

例 求

$$\mathop {\lim }\limits_{x \to {0^ + }} {x^x}$$

解:$x^x$是幂指函数,设$y=x^x$,两边取对数得

$$\mathop {\lim }\limits_{x \to {0^ + }} {x^x}$$ $$\mathop {{\text{lim}}}\limits_{x \to {0^ + }} \ln y = \mathop {{\text{lim}}}\limits_{x \to {0^ + }} x\ln x = 0$$

设$\ln y = ? \to {{\text{e}}^?} = y \to {{\text{e}}^{\ln y}} = y$

$$\mathop {\lim }\limits_{x \to {0^ + }} {x^x} = \mathop {{\text{lim}}}\limits_{x \to {0^ + }} y = \mathop {{\text{lim}}}\limits_{x \to {0^ + }} {{\text{e}}^{\ln y}} = {{\text{e}}^{\mathop {{\text{lim}}}\limits_{x \to {0^ + }} \ln y}} = {{\text{e}}^0} = 1.$$

概念上,洛必达法则的意思是:具有相同自变量和定义域的函数$f(x)$相对于函数$F(x)$的在$x=x_0$点或$x→∞$时的变化率

\[\mathop {\lim }\limits_{\begin{array}{*{20}{c}} {x \to {x_0}} \\ {(x \to \infty )} \end{array}} \frac{{f(x)}}{{F\left( x \right)}}\]

等于两个函数相对于$x$的变化率的比

\[\mathop {\lim }\limits_{\begin{array}{*{20}{c}} {x \to {x_0}} \\ {(x \to \infty )} \end{array}} \frac{{f'(x)}}{{F'\left( x \right)}},(F'\left( x \right) \ne 0)\]

从概念上讲,洛必达法则的逻辑是清晰易懂的,这就是研究洛必达法则的出发点.