1

$$\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + 5}}{{x - 3}} = \frac{{4 + 5}}{{2 - 3}} = - 9$$
2

$$\mathop {\lim }\limits_{x \to \sqrt 3 } \frac{{{x^2} - 3}}{{{x^2} + 1}} = \frac{{3 - 3}}{{3 + 1}} = 0$$
3

$$\eqalign{ & \mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 2x + 1}}{{{x^2} - 1}} \cr & = \mathop {\lim }\limits_{x \to 1} \frac{{{{\left( {x - 1} \right)}^2}}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{x + 1}} = 0 \cr} $$
4

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {4{x^2} - 2x + 1} \right)}}{{x\left( {3x + 2} \right)}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{4{x^2} - 2x + 1}}{{3x + 2}} = \frac{1}{2} \cr} $$
5

$$\eqalign{ & \mathop {\lim }\limits_{h \to 0} \frac{1}{h}\left( { - {x^2} + {{\left( {h + x} \right)}^2}} \right) \cr & = \mathop {\lim }\limits_{h \to 0} \frac{h}{h}\left( {h + 2x} \right) \cr & = \mathop {\lim }\limits_{h \to 0} \left( {h + 2x} \right) = 2x \cr} $$
6

$$\mathop {\lim }\limits_{x \to \infty } (2 - \frac{1}{x} + \frac{1}{{{x^2}}}) = 2$$
7

$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } \frac{{{x^2} - 1}}{{2{x^2} - x - 1}} \cr & = \mathop {\lim }\limits_{x \to \infty } \frac{{{x^2}\frac{1}{{{x^2}}}\left( {{x^2} - 1} \right)}}{{{x^2}\frac{1}{{{x^2}}}\left( {2{x^2} - x - 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to \infty } \frac{{1 - \frac{1}{{{x^2}}}}}{{2 - \frac{1}{x} - \frac{1}{{{x^2}}}}} = \frac{1}{2} \cr} $$
8

$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } \frac{{{x^2} + x}}{{{x^4} - 3{x^2} + 1}} \cr & = \mathop {\lim }\limits_{x \to \infty } \frac{{{x^4}\frac{1}{{{x^4}}}\left( {{x^2} + x} \right)}}{{{x^4}\frac{1}{{{x^4}}}\left( {{x^4} - 3{x^2} + 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to \infty } \frac{{\frac{1}{{{x^2}}} + \frac{1}{{{x^3}}}}}{{1 - \frac{3}{{{x^2}}} + \frac{1}{{{x^4}}}}} = 0 \cr} $$
9

$$\eqalign{ & \mathop {\lim }\limits_{x \to 4} \frac{{{x^2} - 6x + 8}}{{{x^2} - 5x + 4}} \cr & = \mathop {\lim }\limits_{x \to 4} \frac{{\left( {x - 4} \right)\left( {x - 2} \right)}}{{\left( {x - 4} \right)\left( {x - 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to 4} \frac{{x - 2}}{{x - 1}} = \frac{2}{3} \cr} $$
10

$$\mathop {\lim }\limits_{n \to \infty } (1 + \frac{1}{2} + \frac{1}{4} + ... + \frac{1}{{{2^n}}})$$

利用等比数列求和公式,

$$\eqalign{ & 1 + \frac{1}{2} + \frac{1}{4} + ... + \frac{1}{{{2^n}}} \cr & = \frac{{1 - {{(\frac{1}{2})}^n}}}{{1 - \frac{1}{2}}} = 2 - \frac{2}{{{2^n}}} \cr} $$ $$\eqalign{ & \mathop {\lim }\limits_{n \to \infty } (1 + \frac{1}{2} + \frac{1}{4} + ... + \frac{1}{{{2^n}}}) \cr & = \mathop {\lim }\limits_{n \to \infty } (2 - \frac{2}{{{2^n}}}) = 2 \cr} $$
11

$$\mathop {\lim }\limits_{n \to \infty } \frac{{1 + 2 + 3 + ... + (n - 1)}}{{{n^2}}}$$

由等差数列前n项和公式

$$\eqalign{ & 1 + 2 + 3 + ... + (n - 1) \cr & = (n - 1) + \frac{{(n - 1)(n - 2)}}{2} \cr & = \frac{{n(n - 1)}}{2} \cr & \mathop {\lim }\limits_{n \to \infty } \frac{{1 + 2 + 3 + ... + (n - 1)}}{{{n^2}}} \cr & = \mathop {\lim }\limits_{n \to \infty } \frac{{n(n - 1)}}{{2{n^2}}} = \mathop {\lim }\limits_{n \to \infty } \frac{{n - 1}}{{2n}} \cr & = \mathop {\lim }\limits_{n \to \infty } (\frac{1}{2} - \frac{1}{{2n}}) = \frac{1}{2} \cr} $$
12

$$\eqalign{ & \mathop {\lim }\limits_{x \to 1} (\frac{1}{{1 - x}} - \frac{3}{{1 - {x^3}}}) \cr & = \mathop {\lim }\limits_{x \to 1} \frac{{1 + x + {x^2} - 3}}{{(1 - x)(1 + x + {x^2})}} \cr & = \mathop {\lim }\limits_{x \to 1} \frac{{(x - 1)(x + 2)}}{{(1 - x)(1 + x + {x^2})}} \cr & = \mathop {\lim }\limits_{x \to 1} \frac{{ - (1 - x)(x + 2)}}{{(1 - x)(1 + x + {x^2})}} \cr & = \mathop {\lim }\limits_{x \to 1} \frac{{ - (x + 2)}}{{1 + x + {x^2}}} \cr & = \mathop {\lim }\limits_{x \to 1} \frac{{ - x - 2}}{{1 + x + {x^2}}} = - 1 \cr} $$
13

$$\eqalign{ & \mathop {\lim }\limits_{x \to 2} \frac{{{x^3} + 2{x^2}}}{{{{\left( {x - 2} \right)}^2}}} \cr & = \mathop {\lim }\limits_{x \to 2} \frac{1}{{{{\left( {x - 2} \right)}^2}}}\mathop {\lim }\limits_{x \to 2} \left( {{x^3} + 2{x^2}} \right) \cr & = 16\mathop {\lim }\limits_{x \to 2} \frac{1}{{{{\left( {x - 2} \right)}^2}}} = \infty \cr} $$
14

$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } \frac{{{x^2}}}{{2x + 1}} \cr & = \mathop {\lim }\limits_{x \to \infty } \frac{{x\frac{{{x^2}}}{x}}}{{x\frac{1}{x}\left( {2x + 1} \right)}} \cr & = \mathop {\lim }\limits_{x \to \infty } \frac{x}{{2 + \frac{1}{x}}} = \infty \cr} $$
15

$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } \left( {2{x^3} - x + 1} \right) \cr & = \mathop {\lim }\limits_{x \to \infty } 1 + \mathop {\lim }\limits_{x \to \infty } \left( {2{x^3} - x} \right) \cr & = 1 + \mathop {\lim }\limits_{x \to \infty } \left( {2{x^3} - x} \right) \cr & = \mathop {\lim }\limits_{x \to \infty } {x^3}\left( {2 - \frac{1}{{{x^2}}}} \right) + 1 = \infty \cr} $$
16

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} {x^2}\sin \frac{1}{x} \cr & = \mathop {\lim }\limits_{x \to 0} {x^2}\mathop {\lim }\limits_{x \to 0} \sin \frac{1}{x} = 0 \cr} $$

备注:无穷小与有界函数的乘积是无穷小

17

$$\eqalign{ & \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\arctan x \cr & = \mathop {\lim }\limits_{x \to \infty } \frac{1}{x}\mathop {\lim }\limits_{x \to \infty } \arctan x \cr & = \frac{\pi }{2}\mathop {\lim }\limits_{x \to \infty } \frac{1}{x} = 0 \cr} $$
18

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{\sin \omega x}}{x} \cr & = \mathop {\lim }\limits_{x \to 0} \omega \frac{{\sin \omega x}}{{\omega x}} \cr & = \omega \mathop {\lim }\limits_{x \to 0} \frac{{\sin \omega x}}{{\omega x}} \cr & = \omega \cr} $$
19

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{\tan 3x}}{x} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{\sin 3x}}{{\cos 3x}}}}{x} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{x\cos 3x}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{1}{{\cos 3x}}\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{x} \cr & = 3\mathop {\lim }\limits_{x \to 0} \frac{{\sin 3x}}{{3x}} \cr & = 3 \cr} $$
20

$$\eqalign{ & \mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{{\sin 5x}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{{\sin 2x}}{{2x}}}}{{\frac{{\sin 5x}}{{2x}}}} \cr & = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{1}{5}\frac{{\sin 2x}}{{2x}}}}{{\frac{1}{2}\frac{{\sin 5x}}{{5x}}}} \cr & = \frac{{\frac{1}{5}\mathop {\lim }\limits_{x \to 0} \frac{{\sin 2x}}{{2x}}}}{{\frac{1}{2}\mathop {\lim }\limits_{x \to 0} \frac{{\sin 5x}}{{5x}}}} \cr & = \frac{2}{5} \cr} $$