一阶齐次微分方程
如果一阶微分方程可以化为
$$\frac{{{\text{d}}y}}{{{\text{d}}x}} = \varphi (\frac{y}{x})$$的形式,则这个一阶微分方程为一阶齐次微分方程.
例如,一阶微分方程
$$\left( {xy - {y^2}} \right){\text{d}}x - \left( {{x^2} + 5xy} \right){\text{d}}y = 0$$可以化为
$$\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{xy - {y^2}}}{{{x^2} + 5xy}}$$即
$$\frac{{{\text{d}}y}}{{{\text{d}}x}} = \frac{{\frac{y}{x} - {{(\frac{y}{x})}^2}}}{{1 + 5(\frac{y}{x})}}$$所以
$$\left( {xy - {y^2}} \right){\text{d}}x - \left( {{x^2} + 5xy} \right){\text{d}}y = 0$$是一阶齐次微分方程.
在齐次微分方程
$$\frac{{{\text{d}}y}}{{{\text{d}}x}} = \varphi (\frac{y}{x})$$中引入新的未知函数
$$u = \frac{y}{x}$$则
$$y = ux$$ $$\frac{{{\text{d}}y}}{{{\text{d}}x}} = x\frac{{{\text{d}}u}}{{{\text{d}}x}} + u$$代入方程,得
$$x\frac{{{\text{d}}u}}{{{\text{d}}x}} + u = \varphi (u)$$即
$$x\frac{{{\text{d}}u}}{{{\text{d}}x}} = \varphi \left( u \right) - u$$分离变量,得
$$\frac{{{\text{d}}u}}{{\varphi \left( u \right) - u}} = \frac{{{\text{d}}x}}{x}$$两端积分
$$\int {\frac{{{\text{d}}u}}{{\varphi (u) - u}}} = \int {\frac{{{\text{d}}x}}{x}} $$求出积分后再以$\frac{y}{x}$代替 $u$,就得到所给一阶齐次微分方程的通解.
一阶齐次微分方程的另一种定义
定义 对于函数$f(x)$,如果引入常数$λ$,使得$f(λx)=λ^n f(x)$,则称$f(x)$为$n$次齐次方程.
例如,函数$f(x)=x^2$,$f(λx)=λ^2 x^2$,当$x=2$,$λ=5$时,
$f(x)=2^2=4,$
$f(λx)=5^2×2^2=100,$
对于2个变量的函数$f(x,y)$,若$f(λx,λy)=λ^n f(x,y)$,则称$f(x,y)$为$n$次齐次方程.
例如,函数\(f(x,y) = 2{x^2} - 3{y^2} + 4xy\)是2次齐次方程.因为:
\[\begin{gathered} f(\lambda x,\lambda y) = 2{(\lambda x)^2} - 3{(\lambda y)^2} \\ + 4(\lambda x\lambda y) \hfill \\ = 2{\lambda ^2}{x^2} - 3{\lambda ^2}{y^2} + 4{\lambda ^2}xy \\ = {\lambda ^2}(2{x^2} - 3{y^2} + 4xy) = {\lambda ^2}f(x,y) \hfill \\ \end{gathered} \]齐次方程的定义已经用来对一阶微分方程进行分类了.
如果一阶微分方程
$$M(x,y)dx + N(x,y)dy = 0$$中的$M(x, y)$ 和 $N(x, y)$ 都是$n$次齐次方程,即
$$M(\lambda x,\lambda y) = {\lambda ^n}M(x,y),$$ $$N(\lambda x,\lambda y) = {\lambda ^n}N(x,y)$$从而
$$\frac{{M(\lambda x,\lambda y)}}{{N(\lambda x,\lambda y)}} = \frac{{M(x,y)}}{{N(x,y)}}$$则一阶微分方程
$$M(x,y)dx + N(x,y)dy = 0$$是齐次的.
令$t = 1/x$,则
$$\frac{{M(x,y)}}{{N(x,y)}} = \frac{{M(tx,ty)}}{{N(tx,ty)}} = \frac{{M(1,y/x)}}{{N(1,y/x)}} = f(y/x)$$引入新变量$u = \frac{y}{x}$,则
$$\frac{{d(ux)}}{{dx}} = x\frac{{du}}{{dx}} + u\frac{{dx}}{{dx}} = x\frac{{du}}{{dx}} + u$$分离变量,得
$$x\frac{{du}}{{dx}} = f(u) - u$$这样就可以直接积分求解了.
齐次方程中齐次的含义
Homogeneous linear differential equations
homogeneous - 同性质的,同类的; 由相同(或同类型)事物(或人)组成的.
“齐次”是指方程中没有自由项(不包含$y$及其导数的项)
也就是说,齐次方程的每一项都是$y=f(x)$和它的各阶导数,没有其他的项,也就是都出自$y=f(x)$,同类的,来源相同的。
A linear differential equation is homogeneous if it is a homogeneous linear equation in the unknown function and its derivatives. It follows that, if$φ(x)$ is a solution, so is $cφ(x)$, for any (non-zero) constant c. In order for this condition to hold, each nonzero term of the linear differential equation must depend on the unknown function or any derivative of it. A linear differential equation that fails this condition is called inhomogeneous.
注意这句话:
each nonzero term of the linear differential equation must depend on the unknown function or any derivative of it.