泰勒中值定理
如果函数$f(x)$在含有$x_0$的某个开区间$(a,b)$内具有直到$n+1$阶的导数,则对任一$x∈(a,b)$,有
$$f\left( x \right) = f\left( {{x_0}} \right) + f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)$$ $$ + \frac{{f''\left( {{x_0}} \right)}}{2}{\left( {x - {x_0}} \right)^2} + \ldots $$ $$+ \frac{{{f^{(n)}}\left( {{x_0}} \right)}}{{n!}}{\left( {x - {x_0}} \right)^n} + {R_n}\left( x \right)$$其中
$${R_n}\left( x \right) = \frac{{{f^{\left( {n + 1} \right)}}\left( \xi \right)}}{{\left( {n + 1} \right)!}}{(x - {x_0})^{n + 1}}$$这里$ξ$是$x_0$与$x$之间的某个值.
总结:推导函数$f(x)$按$(x-x_0)$的幂展开的带有拉格朗日余项的$n$次泰勒公式的条件是
1) 导数的概念
2) 运动学中的位移、速度和加速度的概念
3) 微分
4) 柯西中值定理(求拉格朗日余项)$←$拉格朗日中值定理$←$罗尔定理$←$费马引理$←$闭区间上连续函数的性质$←$导数$←$函数的连续性和极值概念$←$函数$←$映射$←$区间、邻域、集合
不需要余项的精确表达式时,$R_n (x)=ο[(x-x_0 )^n]$称为佩亚诺型余项.
取$x_0=0$,则$ξ$在0与$x$之间,令$ξ=θx(0<θ<1)$,此时带有拉格朗日余项的$n$次泰勒公式称为麦克劳林公式.
例 写出函数$f\left( x \right) = {{\text{e}}^x}$的带有拉格朗日型余项的$n$阶麦克劳林公式.
解:带有拉格朗日型余项的$n$阶麦克劳林公式为
$$f\left( x \right) = f\left( 0 \right) + f'\left( 0 \right)x + \frac{{f''\left( 0 \right)}}{2}{x^2} + \ldots $$ $$ + \frac{{{f^{(n)}}\left( 0 \right)}}{{n!}}{x^n} + \frac{{{f^{(n + 1)}}\left( {\theta x} \right)}}{{\left( {n + 1} \right)!}}{x^{n + 1}},(0 < \theta < 1)$$ $$f\left( x \right) = f'\left( x \right) = \ldots {f^{(n)}}\left( x \right) = {{\rm{e}}^x}$$ $$f\left( 0 \right) = f'\left( 0 \right) = \ldots {f^{(n)}}\left( 0 \right) = {{\rm{e}}^0} = 1$$所以,
$$f\left( x \right) = 1 + x + \frac{1}{2}{x^2} + \ldots + \frac{1}{{n!}}{x^n} $$ $$+ \frac{{{{\text{e}}^{\theta x}}}}{{\left( {n + 1} \right)!}}{x^{n + 1}},(0 < \theta < 1)$$例 求$f\left( x \right) = \sin x$的带有拉格朗日型余项的$n$阶麦克劳林公式.
解:带有拉格朗日型余项的$n$阶麦克劳林公式为
$$f\left( x \right) = f\left( 0 \right) + f'\left( 0 \right)x + \frac{{f''\left( 0 \right)}}{2}{x^2} + \ldots $$ $$ + \frac{{{f^{(n)}}\left( 0 \right)}}{{n!}}{x^n} + \frac{{{f^{(n + 1)}}\left( {\theta x} \right)}}{{\left( {n + 1} \right)!}}{x^{n + 1}},(0 < \theta < 1)$$ $$f'\left( x \right) = \cos x,f''\left( x \right) = - \sin x,$$ $$f'''\left( x \right) = - \cos x,{f^{(4)}}\left( x \right) = \sin x, \ldots ,$$ $${f^{(n)}}\left( x \right) = \sin (x + \frac{{n\pi }}{2})$$ $$f\left( 0 \right) = 0,f'\left( 0 \right)x = x,\frac{{f''\left( 0 \right)}}{{2!}}{x^2} = 0,$$ $$\frac{{f'''\left( 0 \right)}}{{3!}}{x^3} = - \frac{{{x^3}}}{{3!}},\frac{{{f^{(4)}}\left( x \right)}}{{4!}}{x^4} = 0,$$ $$\frac{{{f^{(5)}}\left( x \right)}}{{5!}}{x^5} = \frac{1}{{5!}}{x^5},$$ $$\frac{{{f^{(6)}}\left( x \right)}}{{6!}}{x^6} = 0,\frac{{{f^{(7)}}\left( x \right)}}{{7!}}{x^7} = - \frac{1}{{7!}}{x^7}, \ldots $$可以看出,当$n$取1,2,3…时,泰勒多项式各项依次为
$$f\left( x \right) = 0 + x + 0 - \frac{{{x^3}}}{{3!}} + 0 + \frac{1}{{5!}}{x^5} + 0 $$ $$- \frac{1}{{7!}}{x^7} + \ldots $$$n$取偶数时,泰勒多项式中对应的偶数项的值才不等于零,因此设$$n = 2m\left( {m = 123 \ldots n} \right),$$ $$2m = 2,4,6,8,10, \ldots $$,其中4,8,10,…项的系数为负数,可以表示为${( - 1)^z}$,$z$的可能取值是$2m,m,m + 1,m - 1,2m + 1,2m - 1$,我们依次带入验证:
$\eqalign{ & {( - 1)^{2m}} = 1,1,1,1, \ldots \cr & {( - 1)^m} = - 1,1, - 1,1, - 1, \ldots \cr & {( - 1)^{m + 1}} = 1, - 1,1, - 1, \ldots \cr & {( - 1)^{m - 1}} = 1, - 1,1, - 1, \ldots \cr & {( - 1)^{2m + 1}} = - 1, - 1, - 1, - 1, \ldots \cr & {( - 1)^{2m - 1}} = - 1, - 1, - 1, - 1, \ldots \cr} $
其中$(-1)^{m+1}$和$(-1)^{m-1}$都符合要求.
$m = 1,2,3 \ldots n$时,
$\eqalign{ & 2m = 2,4,6,8, \ldots \cr & m = 1,2,3,4, \ldots \cr & m + 1 = 2,3,4,5, \ldots \cr & m - 1 = 0,1,2,3, \ldots \cr & 2m + 1 = 3,5,7,9, \ldots \cr & 2m - 1 = 1,3,5,7, \ldots \cr} $
$2m-1$可以作为阶乘.因此
$$f\left( x \right) = x - \frac{{{x^3}}}{{3!}} + \frac{1}{{5!}}{x^5} - \frac{1}{{7!}}{x^7}$$ $$ + {( - 1)^{m + 1}}\frac{1}{{\left( {2m - 1} \right)!}}{x^{2m - 1}} + {R_{2m}}$$ $${R_{2m}} = \frac{{\sin [\theta x + \frac{{\left( {2m + 1} \right)\pi }}{2}]}}{{\left( {2m + 1} \right)!}}{x^{2m + 1}},(0 < \theta < 1)$$例 求极限
$$\mathop {\lim }\limits_{x \to 0} \frac{{\sin x - x{\text{cos}}x}}{{{\text{si}}{{\text{n}}^3}x}}$$解:此式是不定式,根据洛必达法则的条件,我们可以用洛必达法则求解,
$$\mathop {\lim }\limits_{x \to 0} \frac{{\sin x - x{\text{cos}}x}}{{{\text{si}}{{\text{n}}^3}x}}$$ $$ = \mathop {{\text{lim}}}\limits_{x \to 0} \frac{{\cos x - (\cos x - x{\text{sin}}x)}}{{3{{\sin }^2}x\cos x}}$$ $$ = \mathop {{\text{lim}}}\limits_{x \to 0} \frac{x}{{3\sin x\cos x}} = \mathop {{\text{lim}}}\limits_{x \to 0} \frac{1}{{3\cos x}} = \frac{1}{3}$$还可以利用带有佩亚诺余项的麦克劳林公式计算,
$$\eqalign{ & {\sin ^3}x \sim {x^3}(x \to 0) \cr & \sin x = x - \frac{{{x^3}}}{{3!}}\cr & + o({x^3}) (首先将 \cos x 分解开,再乘以x)\cr & x{\text{cos}}x = x - \frac{{{x^3}}}{{2!}} + o\left( {{x^3}} \right) \cr & \sin x - x{\text{cos}}x = x - \frac{{{x^3}}}{{3!}} + o\left( {{x^3}} \right) \cr & - x + \frac{{{x^3}}}{{2!}} - o\left( {{x^3}} \right) = \frac{1}{3}{x^3} + o\left( {{x^3}} \right) \cr} $$(两个无穷小的和仍是无穷小)
$$\mathop {\lim }\limits_{x \to 0} \frac{{\sin x - x{\text{cos}}x}}{{{\text{si}}{{\text{n}}^3}x}} = \mathop {\lim }\limits_{x \to 0} \frac{{\frac{1}{3}{x^3} + o\left( {{x^3}} \right)}}{{{x^3}}} = \frac{1}{3}$$相比较而言,洛必达法则比较简单.